
Go Dependency
Managers

Joey Gibson
joey@joeygibson.com

@joeygibson

mailto:joey@joeygibson.com

Why use a dependency
manager?

• Single list of dependencies for project

• Specify specific versions of dependencies,
instead of just `master`

• Repeatable builds!

• No need to check dependencies into VCS

The List
• In roughly the order I heard about them

• godep

• govendor

• glide

• dep

• gb

godep
• https://github.com/tools/godep

• v79, released on 2/1/2017

• `godep save`

• creates `Godeps` and `vendor` directories

• both should be checked in to VCS

• dependencies must already be in $GOPATH

• `godep get <dep>` to install other dependencies into
$GOPATH and vendor

govendor
• https://github.com/kardianos/govendor

• 1.0.8, 9/21/2016

• `govendor init`

• creates vendor/vendor.json

• check this one file into VCS

• `govendor fetch +missing` to fetch dependencies referenced, but not on GOPATH or in
vendor

• `govendor fetch <dep>` to add a new dep

• `govendor sync` to pull down what's specified in vendor/vendor.json

• `govendor fetch golang.org/x/net/context@v1` gets the latest v1 build

• `govendor fetch golang.org/x/net/context@=v1` get the tag or branch with that name

glide
• https://github.com/Masterminds/glide

• 0.12.3, 10/3/2016

• `glide create`

• creates glide.yaml, and vendor/

• glide.yaml should be committed, not vendor/

• `glide install` will fetch dependencies into vendor/

• creates glide.lock with current specific versions - check this file in to VCS

• run `glide install` whenever you update glide.yaml

• `glide up` will update dependencies

• `glide get` will install additional dependencies

• If dependency uses semver, it will offer to use the latest version

• if not, will use SHA of head

dep - the “official” one
• https://github.com/golang/dep

• No release yet - still very alpha

• go get -u github.com/golang/dep/...

• `dep init`

• create manifest.json, lock.json - files and formats still in flux

• creates Gopkg.toml, Gopkg.lock - commit both to VC

• adds deps from source to Gopkg.lock, but not to Gopkg.toml

• `dep ensure` pulls deps into vendor/

• `dep ensure github.com/sirupsen/logrus@^0.11.4`

• adds constraints into Gopkg.toml

• `dep ensure github.com/spf13/cobra` will add entry to Gopkg.lock, but NOT to Gopkg.toml, and will give
warning about it, since no version specified

• `dep ensure -update` updates all deps within constraints

Which to choose?

• I prefer glide, but I got strange errors sometimes
when in a Docker container

• govendor gives fewest unexpected results

• we use govendor at work

• I use glide for my personal projects

Other Options?

• gb

• completely different source layout, not
compatible with normal Go toolchain

• `gb build all`, instead of `go build`

• you still have to manually manage vendoring

